Termination of the following Term Rewriting System could be proven:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

The replacement map contains the following entries:

U11: {1}
tt: empty set
U12: {1}
isNatKind: empty set
U13: {1}
U14: {1}
U15: {1}
isNat: empty set
U16: {1}
U21: {1}
U22: {1}
U23: {1}
U31: {1}
U32: {1}
U41: {1}
U51: {1}
U52: {1}
U61: {1}
U62: {1}
U63: {1}
U64: {1}
s: {1}
plus: {1, 2}
0: empty set


CSR
  ↳ CSDependencyPairsProof

Context-sensitive rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

The replacement map contains the following entries:

U11: {1}
tt: empty set
U12: {1}
isNatKind: empty set
U13: {1}
U14: {1}
U15: {1}
isNat: empty set
U16: {1}
U21: {1}
U22: {1}
U23: {1}
U31: {1}
U32: {1}
U41: {1}
U51: {1}
U52: {1}
U61: {1}
U62: {1}
U63: {1}
U64: {1}
s: {1}
plus: {1, 2}
0: empty set

Using Improved CS-DPs we result in the following initial Q-CSDP problem.

↳ CSR
  ↳ CSDependencyPairsProof
QCSDP
      ↳ QCSDependencyGraphProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {U16, U23, U32, U41, s, plus, U161, U231, U321, PLUS, U411} are replacing on all positions.
For all symbols f in {U11, U12, U13, U14, U15, U21, U22, U31, U51, U52, U61, U62, U63, U64, U121, U111, U131, U141, U151, U221, U211, U311, U521, U511, U621, U611, U631, U641} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNATKIND, ISNAT, U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

U111(tt, V1, V2) → U121(isNatKind(V1), V1, V2)
U111(tt, V1, V2) → ISNATKIND(V1)
U121(tt, V1, V2) → U131(isNatKind(V2), V1, V2)
U121(tt, V1, V2) → ISNATKIND(V2)
U131(tt, V1, V2) → U141(isNatKind(V2), V1, V2)
U131(tt, V1, V2) → ISNATKIND(V2)
U141(tt, V1, V2) → U151(isNat(V1), V2)
U141(tt, V1, V2) → ISNAT(V1)
U151(tt, V2) → U161(isNat(V2))
U151(tt, V2) → ISNAT(V2)
U211(tt, V1) → U221(isNatKind(V1), V1)
U211(tt, V1) → ISNATKIND(V1)
U221(tt, V1) → U231(isNat(V1))
U221(tt, V1) → ISNAT(V1)
U311(tt, V2) → U321(isNatKind(V2))
U311(tt, V2) → ISNATKIND(V2)
U511(tt, N) → U521(isNatKind(N), N)
U511(tt, N) → ISNATKIND(N)
U611(tt, M, N) → U621(isNatKind(M), M, N)
U611(tt, M, N) → ISNATKIND(M)
U621(tt, M, N) → U631(isNat(N), M, N)
U621(tt, M, N) → ISNAT(N)
U631(tt, M, N) → U641(isNatKind(N), M, N)
U631(tt, M, N) → ISNATKIND(N)
U641(tt, M, N) → PLUS(N, M)
ISNAT(plus(V1, V2)) → U111(isNatKind(V1), V1, V2)
ISNAT(plus(V1, V2)) → ISNATKIND(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
ISNAT(s(V1)) → ISNATKIND(V1)
ISNATKIND(plus(V1, V2)) → U311(isNatKind(V1), V2)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → U411(isNatKind(V1))
ISNATKIND(s(V1)) → ISNATKIND(V1)
PLUS(N, 0) → U511(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U611(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)

The collapsing dependency pairs are DPc:

U521(tt, N) → N
U641(tt, M, N) → N
U641(tt, M, N) → M


The hidden terms of R are:
none

Every hiding context is built from:none

Hence, the new unhiding pairs DPu are :

U521(tt, N) → U(N)
U641(tt, M, N) → U(N)
U641(tt, M, N) → U(M)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 3 SCCs with 21 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
QCSDP
            ↳ QCSDPSubtermProof
          ↳ QCSDP
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U16, U23, U32, U41, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U13, U14, U15, U21, U22, U31, U51, U52, U61, U62, U63, U64, U311} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

U311(tt, V2) → ISNATKIND(V2)
ISNATKIND(plus(V1, V2)) → U311(isNatKind(V1), V2)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(plus(V1, V2)) → U311(isNatKind(V1), V2)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.

U311(tt, V2) → ISNATKIND(V2)
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
U311(x1, x2)  =  x2

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPSubtermProof
QCSDP
                ↳ QCSDependencyGraphProof
          ↳ QCSDP
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U16, U23, U32, U41, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U13, U14, U15, U21, U22, U31, U51, U52, U61, U62, U63, U64, U311} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

U311(tt, V2) → ISNATKIND(V2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
QCSDP
            ↳ QCSUsableRulesProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {U16, U23, U32, U41, s, plus} are replacing on all positions.
For all symbols f in {U11, U12, U13, U14, U15, U21, U22, U31, U51, U52, U61, U62, U63, U64, U131, U121, U141, U151, U111, U211, U221} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

U121(tt, V1, V2) → U131(isNatKind(V2), V1, V2)
U131(tt, V1, V2) → U141(isNatKind(V2), V1, V2)
U141(tt, V1, V2) → U151(isNat(V1), V2)
U151(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(isNatKind(V1), V1, V2)
U111(tt, V1, V2) → U121(isNatKind(V1), V1, V2)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)
U141(tt, V1, V2) → ISNAT(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

Q is empty.

The following rules are not useable and can be deleted:

U51(tt, x0) → U52(isNatKind(x0), x0)
U52(tt, x0) → x0
U61(tt, x0, x1) → U62(isNatKind(x0), x0, x1)
U62(tt, x0, x1) → U63(isNat(x1), x0, x1)
U63(tt, x0, x1) → U64(isNatKind(x1), x0, x1)
U64(tt, x0, x1) → s(plus(x1, x0))
plus(x0, 0) → U51(isNat(x0), x0)
plus(x0, s(x1)) → U61(isNat(x1), x1, x0)


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSUsableRulesProof
QCSDP
                ↳ QCSDPReductionPairProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, U41, U32, U23, U16} are replacing on all positions.
For all symbols f in {U31, U11, U12, U13, U14, U15, U21, U22, U131, U121, U141, U151, U111, U211, U221} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

U121(tt, V1, V2) → U131(isNatKind(V2), V1, V2)
U131(tt, V1, V2) → U141(isNatKind(V2), V1, V2)
U141(tt, V1, V2) → U151(isNat(V1), V2)
U151(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(isNatKind(V1), V1, V2)
U111(tt, V1, V2) → U121(isNatKind(V1), V1, V2)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)
U141(tt, V1, V2) → ISNAT(V1)

The TRS R consists of the following rules:

isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
U41(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt

Q is empty.

Using the order
Polynomial interpretation [25]:

POL(0) = 2   
POL(ISNAT(x1)) = x1   
POL(U11(x1, x2, x3)) = x1   
POL(U111(x1, x2, x3)) = 2 + x1 + 2·x2 + 2·x3   
POL(U12(x1, x2, x3)) = 2·x1   
POL(U121(x1, x2, x3)) = 2 + x1 + x2 + 2·x3   
POL(U13(x1, x2, x3)) = 0   
POL(U131(x1, x2, x3)) = x2 + x3   
POL(U14(x1, x2, x3)) = 2·x1   
POL(U141(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(U15(x1, x2)) = x1   
POL(U151(x1, x2)) = 2·x1 + x2   
POL(U16(x1)) = x1   
POL(U21(x1, x2)) = x1   
POL(U211(x1, x2)) = 2·x1 + x2   
POL(U22(x1, x2)) = 0   
POL(U221(x1, x2)) = x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = 2·x1   
POL(U32(x1)) = x1   
POL(U41(x1)) = 2·x1   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(plus(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(s(x1)) = x1   
POL(tt) = 0   

the following usable rules

isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt

could all be oriented weakly.
Since all dependency pairs and these rules are strongly conservative, this is sound.
Furthermore, the pairs

U121(tt, V1, V2) → U131(isNatKind(V2), V1, V2)

could be oriented strictly and thus removed.
The pairs

U131(tt, V1, V2) → U141(isNatKind(V2), V1, V2)
U141(tt, V1, V2) → U151(isNat(V1), V2)
U151(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(isNatKind(V1), V1, V2)
U111(tt, V1, V2) → U121(isNatKind(V1), V1, V2)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)
U141(tt, V1, V2) → ISNAT(V1)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSUsableRulesProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
QCSDP
                    ↳ QCSDependencyGraphProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, U41, U32, U23, U16} are replacing on all positions.
For all symbols f in {U31, U11, U12, U13, U14, U15, U21, U22, U141, U131, U151, U111, U121, U211, U221} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

U131(tt, V1, V2) → U141(isNatKind(V2), V1, V2)
U141(tt, V1, V2) → U151(isNat(V1), V2)
U151(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(isNatKind(V1), V1, V2)
U111(tt, V1, V2) → U121(isNatKind(V1), V1, V2)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)
U141(tt, V1, V2) → ISNAT(V1)

The TRS R consists of the following rules:

isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
U41(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 1 SCC with 6 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSUsableRulesProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
QCSDP
                        ↳ QCSDPSubtermProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, U41, U32, U23, U16} are replacing on all positions.
For all symbols f in {U31, U11, U12, U13, U14, U15, U21, U22, U211, U221} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)

The TRS R consists of the following rules:

isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
U41(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


ISNAT(s(V1)) → U211(isNatKind(V1), V1)
The remaining pairs can at least be oriented weakly.

U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
ISNAT(x1)  =  x1
U221(x1, x2)  =  x2

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSUsableRulesProof
              ↳ QCSDP
                ↳ QCSDPReductionPairProof
                  ↳ QCSDP
                    ↳ QCSDependencyGraphProof
                      ↳ QCSDP
                        ↳ QCSDPSubtermProof
QCSDP
                            ↳ QCSDependencyGraphProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {plus, s, U41, U32, U23, U16} are replacing on all positions.
For all symbols f in {U31, U11, U12, U13, U14, U15, U21, U22, U221, U211} we have µ(f) = {1}.
The symbols in {isNatKind, isNat, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

U211(tt, V1) → U221(isNatKind(V1), V1)
U221(tt, V1) → ISNAT(V1)

The TRS R consists of the following rules:

isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
U41(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs with 2 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
QCSDP
            ↳ QCSDPSubtermProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {U16, U23, U32, U41, s, plus, PLUS} are replacing on all positions.
For all symbols f in {U11, U12, U13, U14, U15, U21, U22, U31, U51, U52, U61, U62, U63, U64, U631, U621, U641, U611} we have µ(f) = {1}.
The symbols in {isNatKind, isNat} are not replacing on any position.

The TRS P consists of the following rules:

U621(tt, M, N) → U631(isNat(N), M, N)
U631(tt, M, N) → U641(isNatKind(N), M, N)
U641(tt, M, N) → PLUS(N, M)
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(M), M, N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U611(isNat(M), M, N)
The remaining pairs can at least be oriented weakly.

U621(tt, M, N) → U631(isNat(N), M, N)
U631(tt, M, N) → U641(isNatKind(N), M, N)
U641(tt, M, N) → PLUS(N, M)
U611(tt, M, N) → U621(isNatKind(M), M, N)
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3)  =  x2
U621(x1, x2, x3)  =  x2
U641(x1, x2, x3)  =  x2
PLUS(x1, x2)  =  x2
U611(x1, x2, x3)  =  x2

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSDPSubtermProof
QCSDP
                ↳ QCSDependencyGraphProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {U16, U23, U32, U41, s, plus, PLUS} are replacing on all positions.
For all symbols f in {U11, U12, U13, U14, U15, U21, U22, U31, U51, U52, U61, U62, U63, U64, U631, U621, U641, U611} we have µ(f) = {1}.
The symbols in {isNatKind, isNat} are not replacing on any position.

The TRS P consists of the following rules:

U621(tt, M, N) → U631(isNat(N), M, N)
U631(tt, M, N) → U641(isNatKind(N), M, N)
U641(tt, M, N) → PLUS(N, M)
U611(tt, M, N) → U621(isNatKind(M), M, N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(V1), V1, V2)
U12(tt, V1, V2) → U13(isNatKind(V2), V1, V2)
U13(tt, V1, V2) → U14(isNatKind(V2), V1, V2)
U14(tt, V1, V2) → U15(isNat(V1), V2)
U15(tt, V2) → U16(isNat(V2))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(V1), V1)
U22(tt, V1) → U23(isNat(V1))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(V2))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(N), N)
U52(tt, N) → N
U61(tt, M, N) → U62(isNatKind(M), M, N)
U62(tt, M, N) → U63(isNat(N), M, N)
U63(tt, M, N) → U64(isNatKind(N), M, N)
U64(tt, M, N) → s(plus(N, M))
isNat(0) → tt
isNat(plus(V1, V2)) → U11(isNatKind(V1), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → U31(isNatKind(V1), V2)
isNatKind(s(V1)) → U41(isNatKind(V1))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs with 4 less nodes.